• 0 Posts
  • 18 Comments
Joined 1 year ago
cake
Cake day: July 23rd, 2023

help-circle





  • I have used Ubuntu as the daily driver for the last 10 years, because support and tools are widespread and easy, and I don’t need any extra pain in my life. Drivers are mostly present and working upon a clean install, and in the one case where the touchpad wasn’t recognized, it was super easy to find an ubuntu forum post containing a 1-line command to fix it. But everybody says i should hate it and use Mint instead.

    I’m open to give it a go, but in general, will most of the tutorials and fixes you find for Ubuntu also work with Mint?



  • In a sense… yes! Although of course it’s thought to be across many modalities and time-scales, and not just text. Also a crucial piece of the picture is the Bayesian aspect - which also involves estimating one’s uncertainty over predictions. Further info: https://en.wikipedia.org/wiki/Predictive_coding

    It’s also important to note the recent trends towards so-called “Embodied” and “4E cognition”, which emphasize the importance of being situated in a body, in an environment, with control over actions, as essential to explaining the nature of mental phenomena.

    But yeah, it’s very exciting how in recent years we’ve begun to tap into the power of these kinds of self-supervised learning objectives for practical applications like Word2Vec and Large Language/Multimodal Models.






  • I (maybe naively) believe a healthy society could find a way to build a robust public transport network and still accommodate the minority of enthusiasts who drive and work on cars for fun.

    Engineers aren’t just dry husks of people, robotically creating solutions to meet needs. The drive to create cars, planes, and motorbikes, which have significant technical overlap with trains, buses, and mobility aids, is at least partially borne from the thrill of piloting machines that extend human capabilities.






  • There are many structures of proof. A simple one might be to prove a statement is true for all cases, by simply examining each case and demonstrating it, but as you point out this won’t be useful for proving statements about infinite cases.

    Instead you could assume, for the sake of argument, that the statement is false, and show how this leads to a logical inconsistency, which is called proof by contradiction. For example, Georg Cantor used a proof by contradiction to demonstrate that the set of Natural Numbers (1,2,3,4…) are smaller than the set of Real Numbers (which includes the Naturals and all decimal numbers like pi and 69.6969696969…), and so there exist different “sizes” of infinity!

    For a method explicitly concerned with proofs about infinite numbers of things, you can try Proof by Mathematical Induction. It’s a bit tricky to describe…

    • First demonstrate that a statement is true in some 1st base case.
    • Then demonstrate that if it holds true for the abstract Nth case, then it necessarily holds true for the (N+1)th case (by doing some clever rearranging of algebra terms or something)
    • Therefore since it holds true for the 1th case, it must hold true for the (1+1)th case = the 2th case. And since it holds true for the 2th case it must hold true for the (2+1)=3th case. And so on ad infinitum.

    Wikipedia says:

    Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes.

    Bear in mind, in formal terms a “proof” is simply a list of true statements, that begin with axioms (which are true by default) and rules of inference that show how each line is derived from the line above.